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Department of Mathematics, University of Exeter, Exeter EX4 4QE, UK 

Received 8 February 1989 

Abstract. In this paper we discuss similarity reductions and Painlev6 analysis for the 
symmetric regularised long wave and modified Benjamin-Bona-Mahoney equations, both 
of which arise in several physical applications including shallow water waves. Both 
equations are thought to non-integrable (i.e. not solvable by inverse scattering) since 
numerical studies show that the interaction of solitary waves is inelastic. In particular, we 
determine some new similarity reductions of the symmetric regularised long wave equation. 
These new similarity reductions are nor obtainable using the classical Lie group method 
for finding group-invariant solutions of partial differential equations; they are determined 
using a new and direct method which involves no group theoretical techniques. It is shown 
that every similarity reduction of both the symmetric regularised long wave and modified 
Benjamin-Bona-Mahoney equations obtained using the classical Lie group method reduces 
the associated partial differential equation to an ordinary differential equation of Painleve 
type; whereas the new similarity solution of the symmetric regularised long wave equation 
reduces it to an ordinary differential equation which is not of Painleve type. It is also shown 
that neither the symmetric regularised long wave equation nor the modified Benjamin- 
Bona-Mahoney equation possesses the Painleve property for partial differential equations 
as defined by Weiss er al. 

1. Introduction 

In this paper we discuss similarity reductions and Painleve analysis for the symmetric 
regularised long wave (SRLW) equation 

and the modified Benjamin-Bona-Mahoney (MBBM) equation 

U, + au,y + bU2U,\. + cU,\.,r = 0 

where subscripts denote differentiation and a, b, c are constants. 

regularised long wave (RLW) equation) 
The Benjamin-Bona-Mahoney (BBM) equation (which is sometimes called the 
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was proposed by Benjamin et al (1972) as an alternative to the celebrated Korteweg-de 
Vries (KdV) equation (Korteweg and de Vries 1895) 

U, + + uu,y + U,,,, = 0 (1.4) 

which is a soliton equation solvable by inverse scattering (Gardner et a1 1967), for the 
description of long waves in shallow water. Similarly, the MBBM equation (1.3) may be 
viewed as an alternative to the modified KdV (MKdV) equation 

(1.5) 2 U, + U, + U U, + U,,, = 0 

which also is a soliton equation solvable by inverse scattering (Wadati 1972, Ablowitz 
et a1 1974). 

The SRLW equation (1.1) was named by Seyler and Fenstermacher (1984) due to its 
similarity to the BBM equation (1.3) together with its explicit symmetry with respect to 
the x and t derivatives and arises in several physical applications including ion sound 
waves in a plasma (Bogolubsky 1977, Makhankov 1978, Ogino and Takenda 1976, 
Seyler and Fenstermacher 1984). It may be viewed as alternative to the Boussinesq 
equation (Boussinesq 187 1, 1872) 

U,, + au,, + b(u2),, + CU,,,, = 0 (1.6) 

where a ,  b, c are constants, which also arises in several physical applications, and like 
the KdV equation (1.4) and the MKdV equation (1.5) is a soliton equation solvable by 
inverse scattering (Zakharov 1974, Ablowitz and Haberman 1975, Caudrey 1980, 1982, 
Deift et al 1982). 

The inverse scattering method was originally developed by Gardner et al (1967) 
to solve the Cauchy problem for the KdV equation (1.4) (for initial data on the 
infinite line which decays sufficiently rapidly). In effect, this method reduces the 
solution of the non-linear partial differential equation to that of a linear integral 
equation, and the partial differential equation is then said to be completely integrable. 
Such equations all seem to possess several remarkable properties including elastically 
interacting soliton solutions, the existence of infinitely many independent conservation 
laws and symmetries, Backlund transformations, Lax representation, the Painleve 
property, etc (cf Ablowitz and Segur 1981). However, the precise relationship between 
all these properties has yet to be fully established. 

It is known that the SRLW equation (1.1)  and the MBBM equation (1.2) possess 
solitary wave solutions 

1 1 / 2  
u(x , t )  = - 3( '2fa)  sech2[j  1 (-) y 2 + a  ( x k y t ) + x o  2yb - y *C  

1 u(x ,  t )  = - ( T ) ' ' 2  6(y + a) sech [ ( (x + y t )  + xo 
- i 'C 

where ;', xo are constants, respectively. However, both equations are thought not to 
be completely integrable since numerical evidence suggests that the interaction of two 
solitary waves is inelastic and so they are not solitons (cf Bogolubsky 1977, Makhankov 
1978, Seyler and Fenstermacher 1984). Additionally the SRLW equation possesses only 
three independent polynomial conservation laws (Seyler and Fenstermacher 1984). 
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To study similarity reductions of the SRLW and MBBM equations, we assume that 
a = 1, b = 1, c = +1, since the equations 

are equivalent to equations (1.1) and (1,2), after a suitable rescaling and translation of 
the variables. If the quantities in the equations are to be interpreted as real, then the 
sign matters and we choose the plus signs from here on for convenience (and leave 
to the reader the trivial modifications required for the other sign). However, if the 
quantities are interpreted as complex, then the sign does not matter and our analysis 
is complete. 

The classical method of finding similarity reductions of a given partial differential 
equation is the Lie group method of infinitesimal transformations (sometimes called 
the method of group-invariant solutions), originally due to Lie (1891)-for recent 
descriptions of this method see Bluman and Cole (1974), Olver (1986), Ovsiannikov 
(1982) and Winternitz (1983). Although the method is entirely algorithmic, it often 
involves a large amount of tedious algebra and auxiliary calculations which can become 
virtually unmanageable if attempted manually. Symbolic manipulation programs have 
been developed, both in MACSYMA (Rosenau and Schwarzmeier 1979, Champagne 
and Winternitz 1985) and REDUCE (Schwarz 1985), to facilitate the determination of 
similarity reductions using the Lie group method. (See Schwarz (1988) for a recent 
review on the use of computer algebra to find symmetries of differential equations.) 
Bluman and Cole (1969) proposed a generalisation of Lie's method called the non- 
classical method of group-invariant solutions, which itself has recently been generalised 
by Olver and Rosenau (1986, 1987). 

All these three methods determine Lie point symmetries of a given partial differen- 
tial equation since the transformations depend only on the independent and dependent 
variables. Another common characteristic of these methods for finding similarity 
reductions of a given partial differential equation is the use of group theory. 

In this paper we use the direct method of deriving similarity reductions of partial 
differential equations recently developed by Clarkson and Kruskal (1989). The unusual 
characteristic about this method in comparison to the others mentioned above is 
that i t  involves no use of group theory. It has been used to obtain new similarity 
reductions of the Boussinesq equation (1.6) (Clarkson and Kruskal 1989) and the 
modified Boussinesq equation 

I 2  
4rt - q t4 .y . x  - z q x 4 x x  + 4xxx.x = 0 

(Clarkson 1989). In this paper we use the method to obtain similarity reductions of the 
SRLW equation (1.7) and the MBBM equation (1.8). The basic idea is to seek a solution 
of a given partial differential equation in the form 

which is the most general form for a similarity reduction (cf Bluman and Cole 1974). 
Then we require that substitution of (1.9) into the partial differential equation yields 
an ordinary differential equation for w ( z ) .  This imposes conditions upon U ,  z and their 
derivatives which enable one to solve for U and z .  
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The Painleve conjecture (or Painlev6 ODE test), as formulated by Ablowitz et a1 
(1978, 1980) and Hastings and McLeod (1980), asserts that every ordinary differential 
equation which arises as a similarity reduction of a completely integrable partial differ- 
ential equation is of PainlevC type (i.e. its solutions have no movable singularities other 
than poles), though perhaps only after a transformation of variables. Subsequently, 
Weiss et al (1983) developed the Painleve PDE test as a method of applying the Painleve 
ODE test directly to a given partial differential equation, without having to study any 
similarity reductions (which might not exist anyway). A partial differential equation is 
said to pass the Painleve PDE test if all its solutions (both general and singular) are 
'single-valued' in the neighbourhood of arbitrary non-characteristic movable singularity 
manifolds (this is explained further in $5 below). 

The outline of this paper is as follows: in 92 we describe the previously known 
similarity reductions of the SRLW and MBBM equations; in 443 and 4 we use this direct 
method to obtain similarity reductions of the SRLW and MBBM equations, respectively; 
in $5 we discuss the application of the Painleve tests to the SRLW and MBBM equations; 
and in $6 we discuss our results. 

2. Classical similarity reductions 

Here we derive the classical similarity reductions of the SRLW and MBBM equations 
(1,7), (1.8) using the Lie group method as given by Bluman and Cole (1974). Consider 
the one-parameter ( E )  Lie group of infinitesimal transformations in (x, t ,  U )  given by 

5 = x + E X ( X ,  t ,  U )  + O(E2) 

T = t + E T ( X ,  t ,  U) + O(E2) 

(2.la) 

(2.1 b) 

q = U + &U (x, t ,  U) + O ( E 2 )  (2.14 

(2 .2~)  

(2.2b) 

' l e  = U ,  + &UX + O(E2) 

' I r  = U ,  + & U 1  + 0 ( & 2 )  

'I<< = U,, + &U,,, + O(E2) (2.24 

U < ,  = U,( + &U"' + O ( 2 )  (2.2d) 

where the infinitesimals U " ,  U ' ,  U"", U"', U " ,  U x x f ,  UxX" are determined from 
equations (2.1) (cf Bluman and Cole 1974). The equations (1.7), (1.8) are invariant 
under this transformation if y ( 5 , ~ )  satisfies the same equation as u ( x ,  t ) .  Substituting 
(2.1), (2.2) into the SRLW and MBBM equations for q ( ( , r ) ,  then to first order in E we 
have 

U" + uyy + uuxr + u,,,u + U , , U f  + U'U" + 
U + 

= 0. (2.3a) 

(2.3b) + u2 U,, + 2uu,, U + U""' = 0. 
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respectively. Conditions on the infinitesimals X ( x ,  t, U), T ( x ,  t ,  U), U ( x ,  t ,  U) are deter- 
mined by collecting coefficients of like derivative terms in U and equating them to zero 
in equations (2.3). Solving these determining equations for both the SRLW equation 
(1.7) and the MBBM equation (1.8) yields 

X = E  T = P  U = O  (2.4) 

where a, p, y are arbitrary constants (cf Clarkson 1983, Rosenau and Schwarzmeier 
1986). 

Similarity reductions are obtained by solving the characteristic equations 

Hence for both the the SRLW equation (1.7) and MBBM equation (1.8), the only similarity 
reduction obtained by the classical Lie method is the travelling wave solution 

u(x, t )  = f ( z )  z = px - at (2.6) 

where for the SRLW equation, f ( z )  satisfies 

and for the MBBM equation, f (z )  satisfies 

with ’ := d/dz and A, B arbitrary constants of integration. If a/? # 0, then the solution 
f ( z )  of equation (2.7) is expressible in terms of either Weierstrass elliptic functions (cf 
Whittaker and Watson 1927) or the first Painlevk equation (cf Ince 1956) 

W” = 6w2 + z (2.9) 

depending upon the choice of constants; whilst equation (2.8) is solvable in terms of 
Jacobian elliptic functions (cf Whittaker and Watson 1927). Therefore every similarity 
reduction of either the SRLW equation or the MBBM equation obtained using the 
classical Lie method of infinitesimal transformations, reduces the partial differential 
equation to an ordinary differential equation of Painleve type. 

3. New similarity reductions of SRLW equation 

In this section we seek solutions of the SRLW equation (1.7) in the form 

(3.1) u(x, t )  = U (x, t ,  w (z(x, t ) ) )  . 

Actually, as shown below, it  suffices to seek solutions of the SRLW equation in the form 
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where ~ ( x ,  t ) ,  p(x, t ) ,  z(x, t )  are to be determined. However, before doing this we make 
some remarks about this direct method of seeking similarity reductions (using the 
simplified ansatz (3.2)). 

Remark 3.1. We substitute (3.2) into the partial differential equation and then require 
that the resulting equation is an ordinary differential equation for w ( z ) ,  so it is necessary 
that the ratios of different derivatives and powers of w(z) be functions of z only. This 
gives a set of conditions for a(.x,t), /?(x,t) ,  z(x,t) in the form of an overdetermined 
system of equations, any solution of which yields a similarity reduction. (These 
conditions are both necessary and suJicient for (3.2) to reduce the partial differential 
equation for u(x, t )  to an ordinary differential equation for w(z).) 

Remark 3.2. We use the coefficient of w”” (i.e. pz,:z:), provided that z,zr f 0, as the 
normalising coefficient and therefore require that the other coefficients are necessarily 
of the form pz:z:T(z), where T is a function of z to be determined. 

Remark 3.3. Whenever we use an upper case Greek letter to denote a function (e.g. 
T(z)), then this is a function, to be determined, upon which we can perform any 
mathematical operation (e.g. differentiation, integration, logarithm, exponentiation, 
taking powers, rescaling, etc) and then also call the resulting function T(z), without 
loss of generality (e.g. the differential of T(z) will be called T(z)). 

Remark 3.4.  There are three freedoms in the determination of a, p, z which we 
can exploit, without loss of generality (these are valuable in keeping the method 
manageable) : 

(a)  if cx(x,t) is of the form cx = a,(x,t) + P(x, t ) r (z)  then we can assume that r = 0 
(make the transformation w(z) -+ w(z) - T(z)); 

(b)  if p(x, t) is of the form p = /?,(x, t)T(z), then we can assume that r E 1 (make 
the transformation w ( z )  -i w ( z ) / T ( z ) ) ;  

(c)  if z(x,t) is defined by an equation of the form T(z) = z,(x,t), where T(z) is 
any invertible function, then we can assume that r = z (make the transformation 
z -, r-’(z), where r-’ is the inverse of r). 
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+ U,,,. [2W’”ZyZf + w”(4zrz,r + 2z,zrr) + W ’ Z x r r ]  

+ U,,,. [2w/r’z,:zr + w1’(4zyz,yr + 2zrz,,) + w’z,xxr] 

+ U,,.,,. [(“’W’’’ + 3(w”)2)z,:zf + W’w’1(12Z,xZrZxt + 3z,2zrr + 3Z;z,,) 

+ (w’)’(Z.x.yzrr + 2z,:r + 2z.yzxrt + 2zrzxyr)I 

+ U , ,  [w zxzr + W”’(4Z1ZfZXt + z,2zrt + zfz,,) 

+ w q z y y z t r  + 2z,yr + 2z,yz,rr + 2zrzxxr)  + w’z,xxrt] = 0 

1/11 2 2 

(3 .3)  2 

where ’ := d/dz. In order that this is an ordinary differential equation for w(z) ,  then 
the ratios of different derivatives of w ( z )  have to be functions of w and z. If we 
use the coefficient of w”” (i.e. U,z;zf),  as the normalising coefficient (assuming that 
z,zr f O-we discuss the case when z,zr = 0 below), then the coefficients of w’w”’ and 
( w ” ) ~  require that 

u,Z . :z f r (w,  Z )  = v,&~f 

where T ( w , z )  is a function to be determined. Hence 

which upon integration yields 

with O(x, t )  a function of integration (recall remark 3.3 above). Integrating again yields 

with O(x,  t )  another function of integration. Therefore it is sufficient to seek similarity 
reductions of the SRLW equation (1.7) in the form (3.2) (in the case when zxzt f 0). 

Substituting (3.2) into (1.7) and collecting coefficients of like derivatives and powers 
of w ( z )  yields 

with ’ := d/dz. 



3828 P A Clarkson 

The coefficients of ww” and (w’)’ yield the common constraint 

where r ( z )  is a function to be determined. Using the freedom mentioned in remark 
3.4(h), 

The coefficients of ww’ and w’”, after using (3.6), yield the constraints 

respectively, where T,(z), T2(z) are to be determined. Hence from these equations we 
have 

where T(z) = 2r2(z) - 3r , (z) .  Integrating with respect to x yields 

with c(t) a function of integration (recall remark 3.3). Integrating with respect to t 
gives 

with O(x) another function of integration. Using the freedom mentioned in remark 
3.4(c), we have 

z(x, t )  = O(x) + a(t) (3.9) 

where O(x) and a(t) are to be determined. Hence from equation (3.6) we also have 

de do 
dx dt P(x,t) = - -. (3.10) 

The coefficients of w 2  and ww’ (or w”’), after using (3.9)-(3.10), yield the constraints 

d26 d2a 

2 

respectively, where T3(z) and T4(z) are to be determined. Therefore 

d2a -=cl(:) d2 O - = c 2 ( $ )  
dx2 dt2 

2 2 

(3.1 1) 
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with c 1 ,  c2 arbitrary constants. 
The coefficient of w”,  after using (3.9)-(3.1 l ) ,  yields the constraint to 

where T5(z) is to be determined. Without loss of generality, we choose 

(recall remark 3.4(a)), and therefore ~ ( x ,  t )  is defined by 

dB do 
cl(x,t) - - = - 

dx dt 

Solving (3.1 1) gives 

-c;l ln(x + xo)  + x l  

c3 ( x  + xo) 
-cy1 In(t + to) + t i  

if c1 # o 
if c1 = 0 

if c2 # 0 
if c2 = 0 

e ( x )  = 

o(t) = 

(3.12) 

( 3 . 1 3 ~ )  

(3.13b) 

with c3, c4, xo, x I ,  to, t ,  arbitrary constants (we set xo = 0, x I  = 0, to = 0, t ,  = 0 
without loss of generality). 

The coefficients of w’, w and 1 (i.e. the term not involving either w or its derivatives), 
in equation ( 3 . 9 ,  after using (3.9)-(3.12), yield the constraints 

( 3 . 1 4 ~ )  

( 3 . 1 4 4  

respectively, where r6 ( z ) ,  T ~ ( z )  and r 8 ( z )  are to be determined. Suppose that c1c2 # 0, 
then from (3.13), ( 3 . 1 4 ~ )  simplifies to 

(3.15) 

which is impossible (i.e. there exists no function T 6 ( z )  such that this holds). Therefore 
c,c2 = 0 is a necessary (and sufficient) condition for equations (3.13) and (3.14) to be 
compatible, and from equations (3.14) we see that 

All the (necessary and sufficient) conditions obtained by the requirement that the 
ratios of coefficients of powers of w and its derivatives in equation (3.5) are functions 
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of z only, have now been satisfied. Therefore the SRLW equation (1.7) possesses a 
similarity reduction of the form u(x, t )  = U(x, t ,  ~ ( z ) ) ,  for some U and z ,  if and only if 
i t  has the form 

[(27+(27] ( 2 % ) ’  de do 
u(x,t) = - - W ( Z )  - 

dx dt 

with 

(3.16~)  

(3.16b) 

where O(x) and ~ ( t )  are given by equations (3.13), provided that clc2 = 0 and c3c4 # 0, 
w(z) satisfies the ordinary differential equation 

2 

+ 2  (3 + 2 )  W+2(C1 +c*)ww/ - 2  (3 + 2) = 0 (3.17) 

with ‘ = d/dz. 
There are three cases to consider. 

Case I .  c1 = 0, c2 = 0. We obtain the similarity reduction 

(3.18) 

(Since we have assumed that z,zt + 0, then necessarily c3c4 # 0.) 
transformation 

Making the 

(2.2) U ]  (z) = C f C 4 W I  ( z )  - (3.19) 

U, ( z )  satisfies 

with A, B constants, which is the same equation as (2.7). This is the travelling 
wave solution which we also obtained in 52 using the classical Lie group method. 
Since c3c4 # 0, the solution of equation (3.20) is expressible either in terms of either 
Weierstrass elliptic functions or the first PainlevC equation (2.9) (depending upon the 
choice of constants), and so is meromorphic and thus equation (3.20) is of Painlevk 
type. 

Case 2.  c1 = 0, c2 # 0. We obtain the similarity reduction 

In t 
z = c3x - -. c3 1 

C 2 t  C2C3t c2 
u(x, t )  = -- W 2 ( Z )  + C 2 C 3 t  + - (3.2 1) 
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Since necessarily c3 # 0, then we set c3 = 1 ,  without loss of generality. After making 
the transformation w2(z) = 1 - c 2 c 2 ( z ) ,  v2(z) satisfies 

d413, d3c2 d2c de 
dz4 dz’ dz2 dz 
- + 39-  + (2c2 + I )  2 + 3c, 2 + 2c;v2 

- 2 c j c 2 - - c 2 [ 1 ; 2 ~ +  dv2 d2v2 (32] = o .  
dz (3.22) 

In $5 below, we show that there exist solutions of this equation which have movable 
logarithmic branch points and so it is not of Painleve type. 

The similarity reduction 

In t 
u(x ,  t) = t-Iw(z) + i t  z = x - (3.23) 

A 

with 
one-parameter group associated with this similarity reduction is given by 

(f 0) a constant, is a new similarity reduction of the SRLW equation (1,7).  A 

(x, t ,  U )  + (x + y,’)., t e?, U e-? + ;*[(e; - e-;)) (3.244 

for which the associated infinitesimals are 

X ( x , t , u )  =;“- I  T ( x , t , u )  = t U(x, t ,u )  = 23,t-u (3.24b) 

which are clearly not a special case of the infinitesimals obtained using the classical 
Lie group method for the SRLW equation (i.e. equation (2.4)). 

Case 3. c ,  # 0, c2 = 0. This case is the same as case 2 above with x and t interchanged. 
Setting c4 = 1 ,  we obtain the similarity reduction 

In x 
z = t - - 

C1 
u(x, t )  = x-’v3(z) + c , x  

where v3(z) satisfies the same equation as v2(z) (i.e. equation (3.22)), with c2 replaced 
by C I .  

Now we discuss the case when z,zr 0. Since the SRLW equation is symmetric in x 
and t ,  it is suffices to seek solutions in the form 

Substituting this into the SRLW equation (1.7) yields 

+ U\, + U u y r  + U ,  U ,  + uwr, + (U4 + U[[,)y” 

+ 2 ( u \ ,  + + Ur, + uru,)y’ + + Urr,)(Y’)2 = 0 (3.26) 

:= dldx .  By considering the coefficients of the y” and ( Y ’ ) ~  terms, it is easily where 
shown that it is sufficient to seek solutions in the form 
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Substituting this into (1.7) yields 

(3.28) 

This is an ordinary differential equation for y(x) if the ratios of coefficients of different 
powers and derivatives of y are functions of x only. There are three cases to consider 
(since the calculations are similar to those done in the more general case above, details 
are omitted). 

Case I .  Pr 
Then it is easily shown that there are solutions of the SRLW equation of the form 

0. Without loss of generality we assume that = 1 (recall remark 3.4(b)). 

where y ( x )  and $(x) satisfy the equations 

( 3 . 2 9 ~ )  

(3.29 b )  

with A, B arbitrary constants. Equation (3.29b) has the following solutions: 

41 (x) = k tanh[k(x + xo)] 

4 2 ( ~ )  = kcoth[k(x + xO)] 

4&4 = +k 

if B = k2, k > 0 

if B = k2, k > 0 

if B = k2,  k > 0 

$ 4 ( 4  = (x + x01-I 

&(x) = -k tan[k(x + xo)] 

i f B = O  

if B = -k2, k > 0 

where xo are constants. (We remark that 4, ,  42 and q5s are related by complex 
transformations, c $ ~  can be obtained by letting xo --f kco in either 4 ,  or q52, and q54 
can be obtained by letting k + 0 in either 4 ] ,  q52 or 45.)  Consequently we obtain the 
following special solutions of the SRLW equation: 

u1  (x, t )  = C sech[k(x + xo)] + k(t + to) tanh[k(x + xo)] 

u,(x, t )  = C cosech[k(x + xo)] + k(t  + to) coth[k(x + xo)] 

u,(x, t )  = Aexp(Tkx) k k(t + to)  

u ~ ( x ,  t )  = ~ A ( x  + xO) + ( t  + C)/(X + x0) 

u,(x, t )  = C sec[k(x + xo)] - k(t - to)  tan[k(x + xo)] 

(3 .304  

(3.30b) 

(3.304 

(3.30d) 

(3.30e) 

with xo, C arbitrary constants and to := A/k2.  
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Cuse 2. p, f 0, p,, = 0. In this case we obtain the special solution 

x+x, x + x 2  
U,(X,t) = - + - 

t + t l  t + t ,  

with x,, x,, t , ,  t2 arbitrary constants. 

Case 3. p, f 0, By + 0. After some manipulation it can be shown that P(x , t )  has the 
form 

where Q(x), a(x) are to be determined. Furthermore, we can assume, without loss of 
generality that O(x) = 1 (recall remark 3.4(b)). Then necessarily da/dx = 0, and so 
p = t + to,  with to a constant, which contradicts the initial assumption that p, f 0. 
Therefore there are no special solutions of the SRLW equation in this case. 

Since the SRLW equation is symmetric in x and 2, then we obtain further special 
solutions by interchanging x and t in equations (3.30). We note that all the special 
solutions of the SRLW equation are meromorphic with respect to x and t .  

4. Similarity reductions of the MBBM equation 

In this section we determine similarity reductions of the MBBM equation. As for the 
SRLW equation in 43, it suffices to seek similarity reductions in the form 

provided Z , ~ Z ,  f 0. Substituting this into (1.8) and collecting coefficients yields 

with ’ := d/dz. 
We use the coefficient of wttt as the normalising coefficient, then for (4.2) to be 

an ordinary differential equation for w(z), the coefficients of w2w’ and w3 yield the 
constraints 

(4.3a) 

(4.3b) 

where i-,(z), Tz(z) are to be determined. Hence 
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where I-(=) = I- , (z) /T,(z) .  Integrating this and using the freedom in remark 3.4(h) in 
63, 

The coefficient of \vH” yields 

where T3(z) is to be determined. Using ( 4 . 3 ~ )  and the freedom in remark 3.4(u), we 
take 

x = 0. (4.5) 

Using (4.4) and (4.5), (4.2) simplifies to 

pz;zr !$ ’ ”  + (- dB z ;  + P(z,z,, + 2 3 4  N ”  + (g z , ,  + B ( Z y x r  + zr  + 2 , )  

dt 
dB + - U’ + fl3z,,w2w’ = 0 
dt (4.6) 

Now suppose that dp/dt + 0 and using the coefficient of d w ’  as the normalising 
coefficient, then the coefficient of M’ yields 

Integrating this and using the freedom in remark 3.4(c) gives 

where o(t) is to be determined. The coefficient of w”, after using (4.7), yields 

Therefore T4(z) = A,  which is a constant. Multiplying by d,6/dt and integrating, we 
have 

with B another constant. The coefficient of w”’, after using (4.7), yields 

= C z + D  
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with C, D constants (since Ts in linear in x, then necessarily it is linear in z ) .  By 
integrating the coefficient of x we find that 

(f)l = 2Cp6 In p + E p 6  (4.9) 

with E a constant. Equations (4.8) and (4.9) are compatible only if A = E (= 1, without 
loss of generality) and B = C = 0. Hence 

and so (4.6) simplifies to 

with z = x + a(t). It  is easily shown that this is an ordinary differential equation for 
w ( z )  if and only if 

p - 1  a(t) = 7,lt +yo 

with 

simplifies to 

y o  arbitrary constants. However, this contradicts the assumption that dp/dt  f 0. 
If dp/dt  = 0, then without loss of generality we assume that p = 1, and then (4.6) 

z:z,w‘tt + (zrz , ,  + 2z,z\r)wft + (Zyyr  + z ,  + z,)w’ + Z,W*W’ = 0. (4.10) 

This is an ordinary differential equation for w ( z )  provided that 

where T,(z) ,  Tz(z), T3(z) are to be determined. Hence 

with r = (T2 - T;)/T, .  Then integrating twice and using the freedom in remark 3.4(c) 
yields 

z ( x ,  t )  = O(x) + a(t) 

where d(x), a(t) are to be determined, and so (4.10) simplifies further to 

d28 d a  dtl do  dtl 
dx2 dt (dx  d t )  dx 

-wt l ’+- -w + - + -  w + - w 3 = 0 .  

It is easily shown that this is an ordinary differential equation for w(z) if and only if 

O(x) = y l  (x + x,,) a(t) = y z ( t  + to) 

where yl, y,, xo, to are arbitrary constants. 



3836 P A Clarkson 

Hence necessary and sufficient conditions for the MBBM equation to have a similarity 
reduction in the form u ( x ,  t )  = U ( x ,  t, w ( z ) ) ,  for some U and z ,  are that u(x, t) = w ( z ) ,  
with z = y,x+y,t ,  where y , ,  y2 are constants, which is just the travelling wave solution. 

Now we consider the case where z,z, = 0. It is suffices to seek solutions in the form 

Substituting this into the MBBM equation (1.8) yields 

First, i t  is easily shown that ~ ( x ,  t )  0, p(x, t )  = /?(t), and P ( t )  satisfies the equation 

with c constant. Hence (4.11) simplifies to 

dP 2 2  I 
- ( y  + Y”)  + P(1 + B Y )Y = 0. dt 

This is an ordinary differential equation for y(x) only if p = Po, a constant, and so 
there are no special solutions of the MBBM equation in this case. 

Therefore we conclude that the only non-constant similarity reduction of the MBBM 
equation obtainable either using the classical Lie method or this direct method due to 
Clarkson and Kruskal (1989), is the travelling wave solution 

u(x, t )  = w ( z )  z = x - ct 

where w ( z )  satisfies 

c(w’)’ = :w.“ + (1  - c)w2 + AW + B 

with A ,  B constants of integration. This is solvable in terms of Jacobian elliptic 
functions and so is of Painleve type. 

We remark that at first sight this might appear to be a negative result; however, on 
the contrary, by using the direct method, it has been proved that the travelling wave 
solution is the only non-constant similarity reduction of the MBBM equation of the 
form u(x, t )  = U (x, t ,  W ( Z ( X ,  t ) ) ) ,  where U and z are specified functions and w ( z )  satisfies 
an ordinary differential equation (this being the general form of a similarity reduction, 
cf Bluman and Cole 1974). Previous results on the existence of similarity reductions for 
the MBBM equation used the classical Lie group method (Clarkson 1983, 1986), and as 
the SRLW equation clearly demonstrates, this method does not necessarily determine 
all possible similarity reductions of a given partial differential equation. 
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5. Painlev6 analysis 

In this section we apply the Painleve tests to the SRLW and MBRM equations. The 
Pairz1et.i conjecture (or Painleoi ODE t es t )  as formulated by Ablowitz et a1 (1978, 1980) 
and Hastings and McLeod (1980) asserts that every ordinary differential equation which 
arises as a similarity reduction of a non-linear partial differential equation solvable by 
inverse scattering is of Painlece type (i.e. its solutions have no movable singularities 
other than poles), though perhaps only after a transformation of variables. Ablowitz 
et a1 (1980) and McLeod and Olver (1983) have given proofs of the Painleve ODE test 
under certain restrictions. 

Subsequently, Weiss et a1 (1983) proposed the Painlece P D E  test as a method of 
applying the Painleve ODE test directly to a given partial differential equation without 
having to consider similarity reductions (which might not exist anyway). A partial 
differential equation is said to possess the Painleve property if all its solutions are 'single- 
valued' in the neighbourhood of arbitrary, non-characteristic, movable singularity 
manifolds. As for the Painleve ODE test, at present there is no rigorous proof of the 
Painleve PDE test, though a partial proof can be inferred from the partial proof of 
the Painleve ODE test due to McLeod and Olver (1983). Despite being by no means 
foolproof (as we discuss in $6 below--see also Pogrebkov 1989), the Painleve tests 
appear to provide useful criteria for the identification of completely integrable partial 
differential equations. 

The method for applying the Painleve PDE test introduced by Weiss et a1 (1983) 
(with simplifications due to Kruskal, private communication, 1984), involves seeking a 
solution of a given partial differential equation in the form 

I" 

with 

$(x,t) = x + w ( t )  = 0 

( 5 . 1 ~ )  

(5.lb) 

where y ( t )  is an arbitrary analytic function of t ,  and u,(t) ,  j = 0,1,2,. . . , are analytic 
functions of t ,  in the neighbourhood of a non-characteristic movable singularity mani- 
fold defined by $ = 0 (since this is assumed to be non-characteristic, then necessarily 
4,  # 0, and so we may assume that q!~ has the special form (5.lb), without loss of 
generality). Substituting (5.1) into the partial differential equation and equating coeffi- 
cients of like powers of 4 determines p and defines recursion relations for U,, for n 2 1, 
of the form 

where N is the order of the equation, for some functional F,. This defines U ,  unless 
n = 8. for some j ,  1 5 j 5 N .  n = P I ,  pz ,. . ., pN are the resonances (commonly n = -1 
is a resonance and it is usually associated with the singularity manifold defined by 
4 = 0 being arbitrary). For each positive integer resonance there is a compatibility 
condition (i.e. Fij = 0) which must be identically satisfied for the partial differential 
equation to have a solution of the form (5.1) and then uir( t )  is an arbitrary function. 
Essentially, in order for a given partial differential equation to pass the Painleve PDE 

/ 
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test, it is required that p is an integer and there are N - 1 consistent recursion relations 
(i.e. all the compatibility conditions are satisfied), so that the series (5.1) contains the 
requisite number of arbitrary functions as required by the Cauchy-Kovalevski theorem 
( y ( t )  is the Nth arbitrary function) and thus corresponds to the general solution of the 
equation. 

In addition to providing a valuable first test for whether a given partial differential 
equation is completely integrable, other important information relating to completely 
integrable equations can be obtained by use of Painleve analysis, including Backlund 
transformations, Lax pairs, Hirota's bilinear representation, special and rational solu- 
tions, etc (cf Chudnovsky et al 1983, Gibbon et a1 1985, 1988, Newell et al 1987, Weiss 
1983, 1984a,b, 1985a,b, 1986a,b, 1987). Many of these results are obtained by seeking 
solutions of the partial differential equation in the form of a truncated Laurent series 
expansion 

U(& t )  = U&, t ) p ( x ,  t )  + U ]  (x, t ) p + ' ( x ,  t )  + .  . . + up(x, t ) .  (5.3) 

We remark that for a truncated expansion, 4 is generally not assumed to have the 
special form (5.lh); furthermore, equating the coefficient of each order of 4 to zero 
can be too restrictive and a more general approach is required (cf Newell et a1 1987). 

If a compatibility condition is not satisfied for arbitrary 4 (i.e. F/j f 0 for some p) ,  
then it is necessary to introduce terms of the form @-Pin 4 into the series (5.1) at this 
order to make the recursion relations consistent, thereby rendering it a multivalued 
logarithmic psi series. However, if for special choices of 4, all the compatibility 
conditions are identically satisfied (i.e. 4 satisfies a set of 'consistency conditions' 
F,$ = 0), then the equation is said the have the 'conditional Painleve property' (Weiss 
1984b). In these cases, useful information, such as special solutions, for non-integrable 
equations can be obtained by using truncated Laurent series expansions (5.3) (cf 
Cariello and Tabor 1989, Conte 1988, Conte and Musette 1989, Fournier and Spiegel 
1987, Nozaki 1987 and Weiss 1984b). Additionally, even if the equation possesses 
neither the Painleve property nor the conditional Painleve property for any choice of 
4,  then analysis of the associated logarithmic psi series can still yield valuable insights 
(cf Fournier et a1 1988, Levine and Tabor 1988). 

We also remark that symbolic manipulation programs have been developed, both 
in MACSYMA and REDUCE, to assist in the application of the Painleve tests (cf Rand 
and Winternitz 1986, Hlavati 1986, Hereman and van den Bulck 1988). 

5.1. The S R L W  equation and the Painlece ODE test 

In $3 we derived two type of similarity reductions for the SRLW equation (1.7). 

Case 1 .  Consider the travelling wave solution 

u(x, t )  = u(2 )  z = x - ct (5.4) 

where v(z) satisfies the ordinary differential equation 

(2 + I )c  - ;cu* + c2u" = Az + B (5.5) 

with ' = d/dz and A ,  B arbitrary constants. I f  c # 0, then depending upon the choice 
of the constants, the solution v(z) of equation (5.5) is expressible in terms of either (i) 
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if A = 0, elliptic functions (cf Whittaker and Watson 1927), or (ii) if A # 0, the first 
Painleve equation (cf Ince 1956) 

d2 V 
= 6 V 2 +  Z .  

In both cases all solutions of equation (5.5) are meromorphic and so it is of Painleve 
type. 

Case 2. Consider the similarity reduction 

(5.6) 

where i, ($ 0) is a constant and w(z) satisfies 

w”” + 3i.w”’ + (2i.’ + 1)w” + 3i.w‘ + 2i2w - 2i’ww’ - i.[ww” + ( L V ’ ) ~ ]  = 0. (5.7) 

Using the algorithm developed by Ablowitz et a1 (1980), it is easily shown that in the 
neighbourhood of an arbitrary point zo, 

I. 25 

with w4 an arbitrary constant. At higher orders of z - z,,, higher and higher powers 
of In(z - zo) are required. Hence the general solution of equation (5.7) has a movable 
logarithmic branch point and so it is not of Painleve type. 

Since the SRLW equation (1.7) is reducible through the similarity reduction (5.6) to 
an ordinary differential equation (5.7) which is not of Painleve type, then the Painleve 
ODE test predicts that i t  is not solvable by inverse scattering. (We note that if we had 
only considered similarity reductions obtained using the classical Lie group method, 
then there is only one such (non-constant) similarity reduction, namely the travelling 
wave solution (5.4), which reduces the SRLW equation to an ordinary differential 
equation which is of Painlevk type.) 

5.2. The S R L W  equation and the Painlev4 P D E  test 

In order to apply the Painleve PDE test to the SRLW equation (1.7), we seek a solution of 
the equation in the form (5.1) (in the neighbourhood of an arbitrary non-characteristic, 
movable singularity manifold defined by 4 = 0). By leading-order analysis it is seen 
that p = 2 ,  and uo = -12d1p/dt. Equating coefficients of like powers of 4 yields, for 
n 2 1 ,  the general recursion relation 

11-1 1 d y  
( n  + l ) ( n  - 4)(n - 5) (n  - 6)u,, 

/ = I  

= o  
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(define U ,  = 0 for j < 0). Thus the resonances are n = -1, 4, 5, 6. The first few 
recursion relations yield 

1 1  d’ry 2 1 d y d 3 v  -3 

“’ = [Is (dll) - --__ 5 dt dt3 - (%)* - (ST] (g) (5.8b) 

and the compatibility conditions 

du, d y  d 2 y  d3y: !- ( 12Ujdt - U l U 2  = 2-- + U 1  __ + 12- 

+21i4 [ I  + (f)l] +2dt  dt + U 3  dt2 + - = 0. 

dt dy ) dt dt dt2 dt3 

d’u, - = o  
dt2 

du, dy: d2u4 d v  d 6 -- + 2- + (2ulu j  + 2u,u4 + U:)- + - (u lu4  + u2u3)  

du, d y  d 2 y  d’uz 
dt2 

dt dt dt2 dt dt 

(5.9c) 

Using (5.8), the compatibility conditions (5.9a, b) simplify to 
2 d p  d’y d y  d’y 

dt dt3 (5.10a) -- 

(5.9a) 

(5.9b) 

(5.10b) 

which clearly are not identically satisfied for arbitrary y(t). Therefore, in general, it is 
necessary to introduce a logarithmic term of the form ~ 4 . 1  (t)#* In 4, into the series (5.1) 
at this order, and so i t  becomes a multivalued logarithmic psi series (at higher orders 
of 4, higher and higher powers of In 4 are required). Such an expansion indicates that 
the SRLW equation does not pass the Painleve PDE test. 

I t  is easily shown that the only solution of equations (5.10) is 

v(t)  = -ct + k (5.1 1) 

with c, k arbitrary constants, thus 4(.x, r )  = x - ct + k ,  which is the singularity manifold 
for a travelling wave solution. In this case the coefficients U,, in the Laurent series (5.1) 
are constants and from equations (5.8) and (5.9) we see that 

1l0 = 12c U ,  = 0 U* = (2 + l ) / c  U, = 0. 

For these, all the compatibility conditions (5.9) are identically satisfied and so there is 
no need for logarithmic terms to be introduced into the Laurent series expansion. (This 
is because the travelling wave solution reduces the SRLW equation (1.7) to equation 
( 5 . 5 ) ,  which is solvable in terms of either elliptic functions or the first Painleve equation, 
all solutions of which are meromorphic.) Therefore (5.1 1)  is a necessary and sufficient 
condition for the absence of logarithmic terms in the Laurent series expansion (5.1). 
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5.3. The M B B M  equation and the Painlev6 ODE test 

The only non-constant similarity reduction of the MBBM equation (1.8) is the travelling 
wave solution u(x ,  t )  = w(z), where z = x - ct and w ( z )  satisfies 

c(w’)’ = dw4 + (1 - c)w2 + A w  + B (5.12) 

with A , B  constants of integration. This is solvable in terms of Jacobian elliptic 
functions and so is of Painleve type. Therefore every ordinary differential equation 
which arises as a similarity reduction of the MBBM equation (1.8) is of Painleve type, 
and so the MBBM equation satisfies the necessary conditions of the Painlev6 ODE test 
to be solvable by inverse scattering. 

5.4. The MBBM equation and the PainlevP PDE test 

To apply the Painlev6 PDE test to the MBBM equation (1.8), we seek a solution of the 
equation in the form (5.1). By leading-order analysis it  is easily seen that p = 1, and 
U; = -6dyl/dt. Equating coefficients of like powers of 4 yields, for n 2 1, the general 
recursion relation 

dW dun-1 dU,l-3 ( n  + l)(n - 3)(n -4)u, - + (n - 2)(n- 3)-- 
dt dt dt 

n-l k 

k = l  J=O j =1  

(define u j  = 0 for j < 0). Thus the resonances are n = -1, 3, 4. The first few recursion 
relations yield 

-312 i d2y  dy, 
2& dt2 (%) 

U,=-- (5.13a) 

= -1 (9)-”* [ ( g)3 (1 + 2) - .!- 24 (*)’I dt2 (5.13b) 
&I dt 

and the compatibility conditions 

duo - = 0. 
dt 

dt 
du, 2 2  2- + 2uou,u, + u0u2 + U I U *  + 
dt 

(5.14a) 

(5.14b) 

Using (5.20), we see that the compatibility condition (5.14a) is not identically satisfied 
unless 

d2y! - s o  
dt2 (5.15) 

which clearly does not hold for arbitrary yl( t )  and, in general, it is necessary to introduce 
a logarithmic term into the expansion (5.1) at this order. Such an expansion indicates 
that the MBBM equation does not pass the Painlevi. PDE test. 
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For travelling wave solutions, y ( t )  = -ct + k ,  with c, k constants, which is the 
general solution of (5.15). Furthermore, the coefficients U,, in the Laurent series (5.1) 
are constants, and 

For these constants, it is easily shown that compatibility conditions (5.22) are both 
identically satisfied and so there is no  need for logarithmic terms to be introduced into 
the expansion. (This is because the travelling wave solution reduces the MBBM equation 
(1.8) to equation (5.12), all solutions of which are meromorphic.) Therefore (5.15) is a 
necessary and sufficient condition for the absense of logarithmic terms in the Laurent 
series expansion. 

6. Discussion 

First we make some general remarks about similarity reductions of partial differential 
equations. Generally, given a partial differential equation with a symmetry (i.e. a 
transformation of the dependent and/or independent variables that leaves the equation 
invariant), the action of the symmetry group takes one solution of the equation into 
another solution of the equation. Starting with a fixed solution that corresponds to 
the identity element of the group, then every element of the group corresponds to 
some solution of the (same) equation-the starting solution can be any solution of the 
equation. This mapping can be used to define a symmetry, and the group carries the set 
of all solutions of the partial differential equation into itself. Given such a symmetry of 
a partial differential equation, one can seek solutions which are mapped into themselves 
under the action of the group. These are similarity reductions corresponding to the 
group. For a partial differential equation with two independent and one dependent 
variables, these solutions typically are solutions of an  ordinary differential equation. 

Alternatively, the ordinary differential equation can be taken as a means of gen- 
erating similarity reductions (or special solutions) of the partial differential equation, 
without regard to what maps into what. Then the ordinary differential equation ap- 
pears to be an  example of the side condition introduced by Olver and Rosenau (1986, 
1987). This seems to be the way that similarity reductions are generally used. The sim- 
ilarity reductions obtained here are defined through an  ordinary differential equation 
that is ‘compatible’ with the partial differential equation (in the sense that they have 
common solutions). Again, the ordinary differential equation is a side condition on 
the partial differential equation, and the surprise is that there exist common solutions. 
The issue of mapping solutions of the partial differential equation does not arise in 
the procedure used in this paper and so there is no connection with remarks in the 
previous paragraph (in fact, as shown below, the transformation groups associated 
with the additional similarity reductions d o  not map solutions of the partial differen- 
tial equation into itself). This direct method appears to be an  effective procedure of 
generating similarity reductions of given partial differential equations. 

A one-parameter ( 7 )  group associated with the similarity reduction 
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is 

This group maps solutions of the SRLW equation (1.7) into solutions of the ‘perturbed 
SRLW equation’ 

U,, + U,, + UU,,, + U,U( + u,,~, = ( I  - e-’?)@(x, t ,  U) 

@(x, t ,  U) := U,, + ;.tU,, + iU, 0. 

( 6 . 3 ~ )  

(6.3b) 

Additionally, if u ( x , t )  is the similarity reduction (6.1), then i t  is easily seen that 
@(x, t ,  U )  E 0. Although the group (6.2) does not map solutions of the SRLW equation 
into itself, it does give rise to similarity reductions since (6.1) identically satisfies the 
perturbed part of the equation. This poses the question: what type of ‘symmetries’ of 
the SRLW equation (1.7) are those we have obtained, which are not found using the 
classical Lie method? (They are ‘weak-symmetries’ in the terminology of Olver and 
Rosenau (1986,1987j.) 

In order to understand why the perturbation @(x, t ,  U) vanishes identically, recall 
that the infinitesimals for the similarity reduction (6.1) are 

X(x, t ,  U) = r’ T ( x ,  t , U )  = t U ( &  t , U )  = 2i”t - U. 

These necessarily satisfy the invariant surface condition 

X(x, t , U ) L t Y  + T ( x ,  t , U ) U ,  - U ( x ,  t ,  U) = 0 (6.4) 

i.e. 

V’ := U, - i t U ,  - 2i’t + )”U = 0. 

I t  is easily seen that Q, = w\., so p 0 implies that Q, = 0 (but not conversely). 
I t  appears that this observation provides an insight as to why there exist partial 
differential equations which possess similarity reductions whose associated groups do 
not map solutions of the partial differential equation into itself. 

All the similarity reductions obtained in this paper are Lie point transformations, 
since the infinitesimals depend only on the independent variables x, t and the dependent 
variable U, but not upon the derivatives of U. (If the transformations also depend upon 
the derivative of the dependent variable, then the associated symmetries are known 
as Lie-Bucklund symmetries, and are also determined by an algorithmic method-see 
Anderson and Ibragimov 1979, Ibragimov 1985, Olver 1986.) An open question which 
this direct method of determining similarity reductions poses is: what is the relationship 
(if any) between this method, and other generalisations of the classical Lie method, 
in particular to those due to Bluman and Cole (1969), Olver and Rosenau (1986, 
1987) and Bluman et a/ (1988)? I t  is my opinion that the similarity reduction (6.1) 
should be obtainable using the non-classical method due to Bluman and Cole (1969). 
I t  is known that the similarity reductions of the Boussinesq equation (1.6) which are 
derived using this direct method (Clarkson and Kruskal 1989), can also be derived 
using Bluman and Cole’s non-classical method (Levi and Winternitz 1989). However, 
even if the new similarity reductions derived here are theoretically obtainable by any of 
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these generalisations of the classical Lie group method, i t  seems that the direct method 
is somewhat simpler to implement; in fact, it appears to be simpler even than the 
classical Lie group method for some equations (without the assistance of a symbolic 
manipulation program). 

In Bluman and Cole’s non-classical method, one utilises both the partial differential 
equation and the invariance surface condition (6.4), which describes a relationship 
between the infinitesimals X ,  T ,  U and so there are really only two independent 
infinitesimals. Assuming that T $ 0, we set T = 1, without loss of generality, and so 
the invariance surface condition (6.4) becomes 

U, = U (x, t ,  U) - X ( x ,  t ,  u)u,. 

Now in the expressions for the infinitesimals U”, U‘,  etc (recall equations (2.2)), one 
replaces U, by U - U, (and analogously for U,,, U,,, etc). Then proceeding in a similar 
manner to the classical Lie group method, one determines the infinitesimals X ( x ,  t ,  U )  

and U ( x ,  f, U) by collecting coefficients of like x-derivatives of U and equating them to 
zero. However, in the classical Lie group method, one obtains a linear, homogeneous 
system of determining equations (cf Bluman and Cole 1974), whereas in the non- 
classical method, the system of determining equations is usually non-linear. In fact, 
Olver and Rosenau (1987), suggest that for some partial differential equations, these 
determining equations for the non-classical method might be actually too difficult to 
explicitly solve. 

There are two observations which suggest that there exists a relationship between 
the direct method developed by Clarkson and Kruskal (1989) and the non-classical 
method due to Bluman and Cole (1969): 

(a) both methods involve solving an overdetermined system of non-linear equations; 
(b) the invariance surface condition (6.4) appears to play a central role. 
In their generalisation of Bluman and Cole’s non-classical method (1969), Olver 

and Rosenau (1986, 1987) show that in order to determine a group-invariant solution 
of a given partial differential equation, one can use any group of infinitesimal transfor- 
mations. However, in general, given any group of infinitesimal transformations and any 
partial differential equation, there will be no solutions invariant under the group and 
so the question becomes how does one determine a priori whether a given group will 
give a meaningful similarity reduction? One possibility is that by seeking a solution in 
a certain form (as we have done in this paper), one is naturally led to the appropriate 
group (i.e. the requirement that the similarity reduction reduces the partial differential 
equation to an ordinary differential equation is equivalent to the ‘side conditions’ in the 
terminology of Olver and Rosenau 1986, 1987). The results obtained both here and in 
an earlier papers (Clarkson 1989, Clarkson and Kruskal 1989) support the conclusions 
drawn by Olver and Rosenau (1986) that ‘the unifying theme behind finding special so- 
lutions of partial differential equations is not, as is commonly supposed, group theory, 
but rather the more analytic subject of overdetermined systems of partial differential 
equations’. Nevertheless, group theory clearly remains important in the determination 
of explicit, physically significant, special solutions of partial differential equations (as 
also demonstrated by Olver and Rosenau 1987). 

Now we shall make some remarks on the Painleve tests. In the literature there 
has been much lively debate as to whether the Painleve tests provide necessary and/or 
sufficient conditions for a given partial differential equation to be completely integrable. 
As described above, the Painlevk tests are necessary conditions; however, some authors 
(e.g. Weiss et al 1983) interpret them as sufficient conditions. 
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A prime source of contention concerns quasilinear partial differential equations 
such as the Dym equation (Kruskal 1975) 

(6.5) I / 2  U, = (U- ),,, 

which is solvable by inverse scattering (Wadati et a1 1979-see also Calogero and 
Degasperis 1982). The Dym equation can be transformed via hodograph transfor- 
mations (i.e. transformations involving the interchange of dependent and independent 
variables), into both the KdV equation (1.4) (cf Levi et a1 1984), and the MKdV equation 
(1.5) (cf Kawamoto 1985), both of which are solvable by inverse scattering and pass 
the Painleve PDE test (Weiss et a1 1983). However, the Dym equation (6.5) does not 
directly pass the Painleve PDE test since it has an expansion of the form 

OL 

u(x, t )  = 4-4/3(x, t )  1 Uj( t )@Jl”(x ,  t )  
j=O 

with 4(x, t )  = x+v( t ) ,  in the neighbourhood of an arbitrary non-characteristic movable 
singularity manifold defined by 4 = 0 (Weiss 1983) and so it is ‘weak-Painleve’ (cf 
Ramani et a1 1982, Ranada et a1 1985). Consequently, it might be conjectured that 
the ‘weak-Painleve’ property would provide the requisite requirement, but this is not 
sufficient. For example, the higher KdV equation 

is also ‘weak-Painleve’ (Weiss 1986a), yet it is thought not to be completely integrable 
since (a) it has only three independent polynomial conservation laws of a certain type 
(Miura 1976), (b) the interaction of solitary wave solutions is inelastic (Fornberg and 
Whitham 1978), and (c) it appears not to be solvable by inverse scattering (McLeod 
and Olver 1983). Therefore the ‘weak-Painleve’ concept does not appear to distinguish 
between integrable and non-integrable partial differential equations. 

Recall that the Painleve tests require that an integrable partial differential equation 
possess the Painleve property possibly only after a transformation of variables, so 
that we may first have to make a change of variables before applying the tests. 
An open question remains as to what kind of transformations are allowable in the 
application of the Painleve tests (i.e. which transformations does one have to check?). 
I t  seems that completely integrable quasilinear partial differential equations such as 
the Dym equation (6.5), which are ‘weak-Painleve’ can be transformed into a partial 
differential equation with the ‘full-Painleve’ property through an appropriate hodograph 
transformation (see Clarkson and Cosgrove (1 986) and Clarkson et a1 ( 1  989) for further 
examples and an algorithmic method for transforming a quasilinear partial differential 
equation into a form seemingly more suitable for applying the Painleve tests). 

The only non-constant similarity reduction of the MBBM equation (1 -8) obtained 
using either the classical Lie group method or the direct method, is the travelling wave 
solution u ( x ,  t) = w ( x  - ct) ,  where w ( z )  satisfies (5.12), which is solvable in terms of 
elliptic functions and so is of Painleve type. Therefore the MBBM equation satisfies the 
necessary conditions of the Painlev6 ODE test to be solvable by inverse scattering. Yet, 
the MBBM equation does not pass the Painleve PDE test, strongly suggesting that it is 
not solvable by inverse scattering (in agreement with the numerical evidence that the 
interaction of solitary waves is inelastic and so are not solitons (Makhankov 1978)). 
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Hence we conclude that the Painleve ODE test may not be generalised to provide a 
necessary arid sufficient condition for a given partial differential equation to be solvable 
by inverse scattering. (Note that this result does not contradict the original Painleve 
ODE test as formulated by Ablowitz et nl (1978).) Therefore it seems that the Painleve 
PDE test might provide a better criterion for the identification of completely integrable 
partial differential equations, though we caution that it is not always sufficient to just 
seek solutions in the form of the Laurent series (5.1) (cf Clarkson 1985, Weiss 1989). 

For the SRLW equation (1.7), had we only considered those similarity reductions 
which can be obtained using the classical Lie group method, then we would have 
obtained a similar result. However, using the direct method, we obtained the similarity 
reduction (6.1) which reduces the SRLW equation to an ordinary differential equation 
which is not of Painleve type, and so the Painleve ODE test predicts that the SRLW 
equation is not solvable by inverse scattering. This conclusion is supported by the 
facts that (a) i t  does not pass the Painleve PDE test, (b) numerical evidence showing 
that the interaction of solitary waves is inelastic (Bogolubsky 1977, Makhankov 1978, 
Seyler and Fenstermacher 1984), and (c) i t  possesses only three independent polynomial 
conservation laws (Seyler and Fenstermacher 1984). 

There is much current interest in the mathematically and physically relevant de- 
termination of similarity reductions of partial differential equations (either integrable 
equations or, more particularly. non-integrable equations), which reduce the equations 
to ordinary differential equations. Painleve analysis is frequently used to determine 
whether the resulting ordinary differential equation is of Painleve type. It  appears to 
be the case that whenever the resulting ordinary differential equation is of Painleve 
type, then one can explicitly solve the ordinary differential equation and obtain exact 
solutions to the original partial differential equation; however if the ordinary differ- 
ential equation is not of Painleve type, then usually one cannot solve it explicitly (cf 
Gagnon et a1 1989, Gagnon and Winternitz 1988, 1989a, b, c, Grundland et a1 1987, 
Skierski et a1 1988, Winternitz et a1 1987, 1988). It appears that the use of similarity 
reductions in conjunction with Painleve analysis will continue to attract much interest. 
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